Table of Flue Gas Analysis
% volume | CO2 | H2O | N2 | O2 | SO2 | Hcl | H2 | CH4 | CO | Press,atm |
sulfur combustion | 80 | 9 | 11 | 1 | ||||||
Gas turbine exhaust | 3 | 7 | 75 | 15 | 1 | |||||
Flue gas-nat gas | 8 | 18 | 71 | 3 | 1 | |||||
Flue gas-oil | 12 | 12 | 73 | 3 | 1 | |||||
Reformed gas | 6 | 36 | 46 | 3 | 9 | 20-60 | ||||
Incineration -fume | 5 | 8 | 77 | 4 | 6 | 1 |
Heat
Transfer Coefficients inside Tubes
The heat transfer coefficient inside tubes is given by the expression: NU=0.023Re0.8Pr0.4 where NU=hidi/12k Re=15.2w/(dim ) Pr =m Cp/k NU=Nusselt Number Re=Reynolds Number Pr=Prandtl Number Cp=gas specific heat,Btu/lbF m =viscosity,lb/fth k=thermal conductivity,Btu/fthF Simplifying we have: hi=2.44Cw0.8/di1.8 Where C=(Cp0.4k0.6/m 0.4 ) hi=inside heat transfer coefficient,Btu/ft2hF w=flow per tube,lb/h di=tube inner dia,in |
Heat
Transfer outside Tubes(convection)
Though there are several correlations,the following is used to show the effect of the variables on heat transfer: NU=0.35Re0.6Pr0.33 Re=Gd/12m NU=hod/12k Simplifying: ho=0.945G0.6F/d0.4 where F=(k0.67Cp0.33/m 0.27) In addition to convective heat transfer coefficient,non-luminous radiation plays a role. This is a function of triatomic gases such as water vapor,carbon dioxide and sulfur dioxide. ho=outside convective heat transfer coefficient,Btu/ft2hF G=mass velocity,lb/ft2h do=tube outer dia,in |
Gas | Cp | m | K | C | F |
Nat gas flue gas | 0.298 | 0.0832 | 0.0325 | 0.2131 | 0.132 |
Fuel oil flue gas | 0.288 | 0.0840 | 0.032 | 0.2075 | 0.129 |
Sulfur gases | 0.250 | 0.0858 | 0.0298 | 0.1863 | 0.1167 |
Gas turbine exhaust | 0.2767 | 0.087 | 0.0321 | 0.2018 | 0.1263 |
Incineration gases | 0.2753 | 0.085 | 0.0313 | 0.200 | 0.124 |
Reformed gas | 0.639 | 0.0677 | 0.0867 | 0.307 | 0.175 |